
Image Processing with MATLAB

• What is digital image processing? Transforming digital information
representing images

• Motivating problems:
o Improve pictorial information for human interpretation

 Remove noise
 Correct for motion, camera position, distortion
 Enhance by changing contrast, color

o Process pictorial information by machine.
 Segmentation - dividing an image up into constituent parts
 Representation - representing an image by some more abstract

models
 Classification

o Reduce the size of image information for efficient handling.
 Compression with loss of digital information that minimizes loss

of "perceptual" information. JPEG and GIF, MPEG,
 Multiresolution representations versus quality of service

• How do we see?
o Lens focuses an image on the retina (like a camera).
o Pattern is affected by distribution of light receptors (rods and cones) --see

Figure 2.2 of CIP.
o The (6-7 million) cones are in the center of the retina (fovea) and are

sensitive to color - each connected to own neuron.
o The (75-150 million) rods are distributed everywhere, connected in

clusters to a neuron
o Unlike ordinary camera, the eye is flexible.
o Range of intensity levels supported by the human visual system is 1010.
o Uses brightness adaptation to set sensitivity.

Color Vision
The color-responsive chemicals in the cones are called cone pigments and are very
similar to the chemicals in the rods. The retinal portion of the chemical is the same,
however the scotopsin is replaced with photopsins. Therefore, the color-responsive
pigments are made of retinal and photopsins. There are three kinds of color-sensitive
pigments:

• Red-sensitive pigment
• Green-sensitive pigment
• Blue-sensitive pigment

Each cone cell has one of these pigments so that it is sensitive to that color. The human
eye can sense almost any gradation of color when red, green and blue are mixed.

In the diagram above, the wavelengths of the three types of cones (red, green and blue)
are shown. The peak absorbancy of blue-sensitive pigment is 445 nanometers, for
green-sensitive pigment it is 535 nanometers, and for red-sensitive pigment it is 570
nanometers.

(Taken from www.howstuffworks.com)

Pixels:

Pixel based images are created by painting programs such as Adobe Photoshop and
Microsoft's Paintbrush. These are the most common of digital images. Photographs, for
example, are described by breaking an image up into a mosaic of colour squares (pixels).
Depending on their final destination, the number of pixels used per inch varies (PPI or
DPI). On the web where big file sizes mean long downloads, only 72 pixels per inch are
required since monitors only display 72 ppi. For publishing, anywhere from 200-1200 ppi
is required depending on the press and desired quality. Laser printers usually print at
anywhere from 300 to 600 dpi. That is why they produce such sharp images.

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in which each
element of the matrix corresponds to a single pixel in the displayed image. For example,
an image composed of 200 rows and 300 columns of different colored dots would be
stored in MATLAB as a 200-by-300 matrix. Some images, such as RGB, require a three-
dimensional array, where the first plane in the 3rd dimension represents the red pixel
intensities, the second plane represents the green pixel intensities, and the third plane
represents the blue pixel intensities.

To reduce memory requirements, MATLAB supports storing image data in arrays of
class uint8 and uint16. The data in these arrays is stored as 8-bit or 16-bit unsigned
integers. These arrays require one-eighth or one-fourth as much memory as data in
double arrays. An image whose data matrix has class uint8 is called an 8-bit image; an
image whose data matrix has class uint16 is called a 16-bit image.

Indexed Images

An indexed image consists of a data matrix, X, and a colormap matrix, map. map is an m-
by-3 array of class double containing floating-point values in the range [0, 1]. Each row
of map specifies the red, green, and blue components of a single color. An indexed image
uses "direct mapping" of pixel values to colormap values. The color of each image pixel
is determined by using the corresponding value of X as an index into map. The value 1
points to the first row in map, the value 2 points to the second row, and so on. You can
display an indexed image with the statements:

image(X); colormap(map)
A colormap is often stored with an indexed image and is automatically loaded with the
image when you use the imread function. However, you are not limited to using the
default colormap--you can use any colormap that you choose. The description for the
property CDataMapping describes how to alter the type of mapping used.
The next figure illustrates the structure of an indexed image. The pixels in the image are
represented by integers, which are pointers (indices) to color values stored in the
colormap.

Imread:

A = imread(filename,fmt) reads a grayscale or truecolor image named filename into
A. If the file contains a grayscale intensity image, A is a two-dimensional array. If the file
contains a truecolor (RGB) image, A is a three-dimensional (m-by-n-by-3) array.

DEFINITIONS:

Rotation:

B = IMROTATE(A,ANGLE,METHOD)
A is your image.
ANGLE is the angle (in degrees) you want to rotate your image in the counter
clockwise direction.
METHOD is a string that can have one of

 these values:
If you omit the METHOD argument, IMROTATE uses the default

 method of 'nearest'. Note: to rotate the image clockwise, specify a
 negative angle.

 The returned image matrix B is, in general, larger than A to
 include the whole rotated image. IMROTATE sets invalid values
 on the periphery of B to 0.

Scaling:

IMRESIZE Resizes the image.

IMRESIZE resizes an image of any type using the specified

 interpolation method. Supported interpolation methods
 include:

 'nearest' (default) nearest neighbor interpolation?

 'bilinear' bilinear interpolation?

 'bicubic' bicubic interpolation ?

 B = IMRESIZE(A,M,METHOD) returns an image that is M times the
 size of A. If M is between 0 and 1.0, B is smaller than A. If
 M is greater than 1.0, B is larger than A. If METHOD is
 omitted, IMRESIZE uses nearest neighbor interpolation.

 B = IMRESIZE(A,[MROWS MCOLS],METHOD) returns an image of size
 MROWS-by-MCOLS. If the specified size does not produce the
 same aspect ratio as the input image has, the output image is
 distorted.

a= imread(‘image.fmt’); % put ur image in place of image.fmt.
» B = IMRESIZE(a,[100 100],'nearest');
» imshow(B);
» B = IMRESIZE(a,[100 100],'bilinear');
» imshow(B);
» B = IMRESIZE(a,[100 100],'bicubic');
» imshow(B);
» B = IMROTATE(a,45);
» imshow(B);

Edge Tracing

b=rgb2gray(a); % convert to gray. WE can only do edge tracing for gray images.

 edge(b,'prewitt');
 edge(b,'sobel');
 edge(b,'sobel','vertical');
 edge(b,'sobel','horizontal');
 edge(b,'sobel','both');

FINALLY
So that’s enough of definitions, but it was necessary to get you familiar with the
language! The primary object of this lab is to get you comfortable with MATLAB and
prepare you for future classes.
Lets get started!

Download an image into your U:\ee186 folder. Choose any image you like!

Now using the instructions from the previous lab, read the image and store it as any
variable you want to. For example, I will be using ‘A’ throughout this lab!

Let’s Rotate the image

>>B=imrotate(A,30);
>>Imshow(B)

That code above, rotates the image by 30 degrees remember it is counterclockwise.

Ok now rotate the image by 90 and 270 degrees, from the clock wise direction. See what
happens.

Resize the image

Like mentioned in the definitions there are two ways to resize an image.

>> C=imresize(A,0.5);
>> imshow(C)

This is what happened to the flower image when I shrunk it by half!

Try the alternate method (IMRESIZE(A,[MROWS MCOLS],METHOD)) and notice
what happens. Have fun with it; do not be scared of it! Find out the difference between
bilinear, bicubric and nearest.

Edge tracing

We can only do edge tracing using gray scale images (i.e images without color).

>> BW=rgb2gray(A);
>> edge(BW,’prewitt’)

That is what I saw!

>>edge(BW,’sobel’,’vertical’)
>>edge(BW,’sobel’,’horizontal’)
>>edge(BW,’sobel’,’both’)

Notice what happens when you do each of these edge tracings and make a note of it in
your Lab report. In your own language try and explain what exactly happens to the image
once each of these lines of code are executed.

• What exactly is the use of digital image processing as Electrical Engineers?
• What is the use of edge tracing, resizing or rotating an image?
• Could you team up with another group and identify how can each of the

operation you did in today’s laboratory be used in a practical case. For
example one can say that if I am designing a auto pilot to land an unmanned
plane, one way to detect the exact location of the landing strip is by first
doing and edge detection and then some additional processing to see what are
the lines that converge at the distance etc.

Keep saving every line of code you execute and save every image you create. It will
be a great addition to your portfolio. Remember its your portfolio that talks about
you as an engineer!

